자연수의 약수를 찾거나 소인수분해, 분수를 약분 또는 통분할 때 등의 경우, 우리는 배수를 이용한다. 간단한 수는 직관적으로도 찾을 수 있지만, 큰 수는 직관에만 의존할 수는 없다. 여러 번의 시행착오도 필요하고 시간도 많이 소모되며, 결국에는 계산기를 쓰는 일도 생긴다. 계산기 자체의 사용이 잘못된 것은 아니지만 우린 계산기보다는 필산으로 깔끔하게 답을 구하는 것을 선호한다.
배수의 특징을 알면 좀 더 수월한 계산을 할 수 있어서 몇 가지 정리한다. 이 글에서 사용할 기호와 공통적으로 사용하는 성질은 다음과 같다.
는 를 나눌 수 있다. ( 는 의 배수이다. 또는 는 의 약수이다.)
예)
는 를 나눌 수 없다. ( 는 의 배수가 아니다. )
예)
예)
예)
예)
(단, 은 )
#️⃣
∵
#️⃣
∵
#️⃣
∵
#️⃣
∵
#️⃣
∵
#️⃣
⑴ 일의 자리의 숫자의 두 배와 나머지 수의 차가
∵
⑵ 일의 자리부터 세 자리씩 끊어서 낮은 자릿수 그룹부터
∵
⑶ 일의 자리의 숫자부터
∵
⁞
#️⃣
∵
#️⃣
∵
#️⃣
∵
#️⃣
⑴ 홀수 자리의 합과 짝수 자리의 합의 차가
∵
⑵ 일의 자리의 숫자와 나머지 수의 차가
∵
#️⃣
⑴ 일의 자리의 숫자의
∵
⑵ 일의 자리부터 세 자리씩 끊어서 낮은 자릿수 그룹부터
∵
#️⃣
∵
#️⃣
∵
#️⃣
∵
#️⃣
∵
#️⃣
∵
#️⃣
∵
#️⃣
∵
#️⃣
∵
'잡학다式' 카테고리의 다른 글
로마 숫자 (0) | 2021.10.19 |
---|---|
최대공약수와 최소공배수 (0) | 2021.10.13 |
소인수분해 (0) | 2021.09.12 |
복사용지 규격의 원리와 확대 축소 비율의 규칙에 대하여 (0) | 2021.08.28 |
[원리합계]예금/적금, 단리/복리 (0) | 2021.08.24 |